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ABSTRACT

The purpose of this report is to explicitly derive two sets of six-degree-
of freedom equations of motion for a symmetric missile.

One set is based upon a coordinate system that is rigidly attached to
the missile (body-fixed system), while in the second set (fixed-plane sys-
rem) a coordinate systein with one axis constrained to lie in a given plane
is employed to derive the equations of motion.

Both sets of equations assume the earth to be spherical, include the
effect of the e~rth's rotation, and consider variable wind. In addition, for
the body-fixed system, discussion of initial conditions and singularities
of the differential equations is presented.



TABLE OF SYMBOLS

11, Jji k,

-4 .4 -4

l'E JE, kE
4 4 .4 Coordinate systems

id' kE

-0 -4 -*

A 1 8, C Azhitrazy vector quantities

-4

GE
-4

0 j Angular velocities

W•F

.4P
V Miavoila velocity, independent of wind velocity

VW Wind velocity
.0

V, Missile velocity relative to the wind

Y. Summation of forces acting on missilt

Summation of torques acting on missile

JTotal angular momentum of missile

Ix, 'y, 1z Moments of inertia about the three axes of the missile

e, 0, 4i Euler angles

R Position of missile center of gravity relative to reference co-
ordinate system

t ILncrement of time

y Unit vwctor indicating direction of gravitational force

ho Vector indicatiaS altitude of missile
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RV Mean radius of the earth

5 Grsvitational factor

m Mass of rocket

p Density of &ir

d Diameter of missile

Distance from nose of missile to center of pressue. expressed in calibes

X •F Distance from nose of missile to magnus center of pressure, expressed
an calibers

f Distance from nose of missile to missile center of gavity, expressed
in calibers

tu Thrust malaliniment 
distances

t!

T Thrust of missile

kDA Azial drag coefficient

kN Normal force coefficient

kF Magnus force coefficient

kH Yaw damping moment coefficient

k-, 0 Rolling moment coefficients

K Proportionality factor of thrust applied to jet torque

y Angle between yaw plane and iM axis

ST • Angles giving position of thrust relative to missile coordinate

SA• system



AO Longitude of missile launch position

BO Latitude of missile launch position

HO Missile angle of declination relative to geographic system

Go Angle measured from positive k4l€ axis relating lateral missile posi.

tion in geographic system

d Denotes time derivative
dt

A general vector V will be represented in a particular coordinate system by

(V)i where i denotes the referencing coordinate system.

A component of a vector will be denoted by two subscripts, the first

giving the component, the second denoting the coordinate system used.

Here X, Y, and Z represent components along the i, 1, k axes respectively. For

example (Vw )YE is the component of the wind velocity along the I£ axis.

Finally AV denotes differentiation relative to the eth coordinate system.
dt
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INTRODUCTION

This report is part of a continuing program to give Picarinny Arsenal a
complete capability in the flight simulation of all types of projectiles and
missiles, whether ballistic or rocket-boosted., guided or unguided. This
capability is important to the development of both conventional and spe-
cial weapons. it provides necessary information for aerodynamic deliign,
range calculations, error analyses, fuzing systems, and complete weapon
systems evaluations. The mathematical model defined in this report forms
the basis for a corresponding digital computer program which has been
developed for the IBM 709/1401 system.

Contained herein are two derivations of the six-degree-of-freedom equa-
tions of motion of a missile. The two derivations differ by the fact that,
in one case, forces and moments acting on a missile are referred to a co-
ordinate system that is rigidly attached to a missile (body-fixed system),
while, for the second set, the forces and moments are referred to a co-
ordinate system ;hat has one axis constrained to lie in a given plane
(fixed-plane system). It is believed that the first set is more appropriate
for asymmetric missiles with the missile coordinate system chosen to
coincide with the principal axes of the body. This system, however, seems
to have a disadvantage fnr high spin rates (spin-stabilized rockets) in that
it may be necessary to take very small time increments to obtain an accu-
rate trajectory by numerical methods (this will be indicated in RESULTS
AND DISCUSSION). For this case the second set of equations seems more
appropriate.

It should be noted that it may be advantageous to choose other coordi-
nate systems than considered here, either to suit a particular missile or
because of the type of resultant data desired. Stability considerations and
terminal effects are examples for which specialized results are required.

Both sets of equations in this report include the effect of the earth' s
rotation about its axis, gravitational expressions for both the flat earth
(the earth is assumed to be a plane, valid for short trajectories) and the
spherical earth (the earth is assumed to be a perfect sphere), variable air
density, and the effect of wind. It is also well to state specifically that
the following effects are not included in the derivations:
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1. Guidance factors

2. The motion of the earth along its orbit

3. Launcher effects

4. Asymmetric missiles

5. Stability criteria

These represent areas of extension to the present equations. The reader
is referred to References 1, 2 and 3, which treat in some detail some of
these additional factors.
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To introduce the reader to the equations of motion, a brief derivation is
presented in Equations I to 11. The definitions of the various symbols
are given on pages 4, 5, and 6. Equations I and 2 provide the foundation
for the equations of motion. Arrows over symbols indicate vector quantities.

daR
dt2

5L (2)
dt

Here the derivatives are taken with respect to a fixed coordinate system

( 1, ji, k1 ). Now

V Vi 1  V 1j, Vzxkz VX~iM yj + VZ~kU (3)
dc

im, p., km indicate a moving coordinate system.

Equation 1 can be written in terms of the moving coordinates as

. ~.

dLV fdMV+W-4(
dt L dt

where indicates a derivative relative to the moving coordinate sys-
dt

tern. In addition,

( - (=X1 + (iy[1M + - cymim + wyMZM +zJ (5)

which upon expansion yields

M d VXM" d VyM.4 dVz,.+ (w ,MzwzMVyM
dt xM + dt k+

+ (,ZMVXM -,,,xMVzM)iM + (WxMVyN - (c MVxM)kM (6)

in terms of the moving coordinate system.
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Similarly for Equation 2

L - +( xJ) (7)
dt dt

where now
-. -. -

I - JXM('XMiM + I'yUyMjM + IZMt)ZMkM (8)

which upon expansion yields

dX wm d (UZ•

dt d i

+ ',xm zlxm -lzm)iM + x•yM( I yM -Ixu)km (9)

also in cerms of the moving coordinate system.

The forces and moments are:

IF - (Fx d:ag + FX gravitational + FX thrustdilM

+ (FY normal + FY magnus + Fy gravitational + FY thrust)M

+ (FZ normal + FZ magnus + FZ gravitational + FZ thru,.)eM (10)

L= (Lx roll damk ing + LX jet torque LX spin deceleration

"+ LX thrust malalignmendtM

"+ (Ly restoring + Ly yaw damping + Ly magnus

"+ Ly thrust malalignment)iM

"+ (Lz restoring + LZ yaw damping + LZ magnus

+ Lz thrust maialignment)k M (11)
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In succeeding sections of this report, these equations of motion, along
with all the necessary supplementary equations for their solution, will
be explicitly derived. In particular, Part A of the section entitled PRO-

CEDURE covers principles of rotating coordinate systems and Euler

angles. In Part B, these principles are used in deriving the equations of
motion. A complete tabulation of the resulting equations is presented at

the end of the PROCEDURE.

PROCEDURE

Several coordinate systems are used in deriving the equations of motion.

The reasons can be summarized as follows:

1. Forces and moments acting on a missile are commonly resolved
along the axes of a "missile coordinate system," that is, a coordinate
system with a conveniently specified orientation relative to the missile
itself. It should be noted that this coordinate system will usually travel
in some manner along the missile trajectory.

2. Newton's laws of motion are strictly valid in an inertial coordi-
nate system, that is, a coordinate system fixed in space. Because of this,
any forces and moments that are resolved along the axes of a moving co-
ordinate system must eventually be referred to fixed (or inertial) coordi-

nates to correctly relate forces and accelerations.

3. It is of ten convenient to refer the motion of a missile to coordi-

nates that are neither inertial nor dependent upon missile orientation. An

example is the case when it is desired to refer the motion of a missile to

coordinates fixed on the earth's surface.

For these reasons the basic equations governing moving coordinate sys-

tems will now be derived.

A. Mathematical Preliminaries

I. Rotating Coordinate Systems

Relations that exist between rotating coordinate systems will now

be derived. Consider first two non-rotating right-handed coordinate systems

(iA, )A, kA) and (i1B, j], kB) as in Figure 1 (p 10). A vector A can be

represented in either coordinate system as follows:

9



kA

AsA

'A

Figure 1

AA - AXAIA + AyAJA + AZAkA (12)

AD wAXBI5 + AyBJB + AZSkB (13)

where, since a vector is independent of the coordinate system represent-

ing it,

AA - AB - A (14)

if A is moving, then, •elative to eac- coordinate system

dAAA_ dAXA~ d AYA. dA zA
VA^ _ x-•^÷ -jA^+ kA (15)

dt dt dt dt

dBAB dAx d dAyB_! dAZB"
__ __'B + k (16)

- ~i - + -IB + •-ks 1
dt dt dt dt
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Since the time rate of chaage of A (V V) is another vector which again is
independent of the representing coordinate system,

V4 4 4aý

Because of Equation 17 it is not necessary to actually specify

d __A, dBA or to which coordinatc the motion of A is calculated, or
dt ' dt

mathematically

dAA d8 ,A dA (18)

dt dt t

This is not tz.e if the 1B, 'B, kB coordinate system is rotating relative to4 "4 4J-

iA 1 1, kA. As a trivial example, it is possible that J.A - 0 while
dt

-A•A /4 0, for the case of a vector fixed in the (-B, !v, ks) system. To
dt

calculate the rate of change of A relative to the fixed coordinates, but in

terms of the rotating coordinates (d A B) it is necessary to account

also for the rotation of IB' 13. kB, namely,
B- d Ay d AZB-• + Yk" (19)

B. i BB+ -B +Ax d-ýk- + Ay dAJ'B + AZR ~Bdt dt dt dA -t dt

To determine expressions for L., dAuB and dAk, imagine
dt dt dt

vector B of fixed length rotating with angular velocity ( as shown in
Figure 2 (p12).

11



Figure 2

The time derivative of B with respect to any fixed system is as follows:

dB , Lirm Bt +A-)- Bt) - Lim A__

dt At-40 At AC-.0 At

Referring to Figure 2, the magnitude is

AB- maBin 0 (20)

in a direction perpendicular to the plane containing • and I. This vector,

in the limit, is precisely ('a B.

Consequently

. d 4 -4 -4.

Lirm AB- .. A -wxB (21)
Ar 4 O At dt

For our particular case B can represent any one of the unit vectors; hence,

dAiB - . dAiB ~ d~ A'B
=OLBx1B; -B- JBx; - -dcuB- x"kB (22)

dt dt dt

where ZB is the angular velocit) of IB' IB, kB

12



Equation 19 becomes

-4 .4

-- ~oxiD +A]~gxB + AZ~B g (23)dt ,

where dLŽ. denotes the time rate of chsange of A relative to the rotating
dt # 4

coordinate system (i,, Bj ' k 1) This derivative shows how A will change

in time to an observer situated on the rotating coordinate system.
Rewriting Equation 23 we obtain

dAAB dA=t..._a dt._• + (wB x AxeiB) + (w. ,, ̂ y.;B) + (wB,, A Zgks
dt d

or finally

d&3  d3 t
5t 5t-+ (24)

This is the basic equation governing rotating coordinate systems.
-4

To determine the acceleration of A relative to a fixed system, again in
terms of the rotatitn coordinates, we have

dA2A . dA (dABS) (25)

dt' t(d

Following rules just established:

dA3-'kB _ ( dA-B) +,xdAA-B) dA(25a)

d dt dtitdB1 / 0

dB AB + -. d BAB

-B + d B Ad ÷
dt" dt dt

d ABA
W.x AB +B x (Ca x AB)

13



Finally we have the result

3AA ~A +!! xAB+2 w B~ x " (wex AB) (6AD2 d' Xe d0A D (6

We note in passing chat

dL dx

or since x 4 -

d d88 (28)
dc dt

or the time derivative of Z can be taken relative to either coordinate system.

We can now remove zhe restriction that the two origins are coincident.

Assume that the 6B8 , 18 ,k B) system is translating, as well as rotating,

relative to the ('A' 1 A, kA) system. We have, referring to Figure 3,

-44

0i

'AA

Figare 3
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C A+ B (29)

dAC dA A +dAB

dAC dAA d a- A + + x (31)
d d dt d d

and finally

*CdA d1 B B)d . r
ýA A +L-+ 0*2 B X + x( ')+... KB (32)dt d dt* d s* dt dt

This discussion is concluded by a theorem that will be of considerable
use in deriving the ballistic equations of motion when more than two co-
ordinate systems are involved.

Given a primed coordinate system rotating with angular velocity W A

with respect to an unprimed coordinate system, and a starred coordinate
system rotating with angular velocity ' relative to the primed coordinate

'rB
system, then the angular velocity of the starred coordinate system relative
tothe unprimed system is W'^ + (B" The proof is as follows: The velocity

of any vector C, fixed in the starred coordinate system, relative to the
primed coordinate system (denoted by d'C/dt) is

dIC w X C(33)
*it

and the velocity of C relative to the unprimed coordinate systems becomes

dt dt

15



Before deriving the equations of motion a second mathematical prelimi-

nary must be disposed of, namely, the Euler angles and their derivatives.
It is presumed that the reader has a knowledge of the elementary operations
of matrices.

11. Euler Angles and Their Derivatives

The purpose of this development is to determine what relationships
exist between the axes of two differently oriented coordinate systems.
These relationships are important since we may know the components of a
vector (e.g. velocity) in one coordinate system, and wish to know the com-
ponents of the same vector in another coordinate system. These relations
will be handled by what are known as Euler angles, although one may use
other techniques such as direction cosines. To fix ideas, three arbitrary

rotations of a (right-handed) coordinate system will be performed about

selected axes. This is sufficient to orient a given coordinate system into

any other desired (right-handed) position.

In particular, consider a fixed coordinate system IA, ,A' kA, and a sec-

ond coordinate system (i, j,k) initially coincident with it, and whose final

position will be denoted by iB, jB, kB. Intermediate positions of i, i, k,
will be denoted by a sequence of primes, the number of which denotes the

number of rotations already performed, i , . . . , k of course, all being

unit vectors.

Now first rotate i, 1, k about kA by an angle of magnitude 0, as shown in

Figure 4, where each axis of the triad i, j, k becomes i', j', k', respectively.

kA, k4

(.4

0 JA

.iI['

Figuic 4
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By trigonometry, the projections of the primed axis on the "A" subscripted
or fixed axis can be determined. The result of this computation can be con-
venienzly written in matrix form as follows:

itCOS o iA^

i'-s• •o CO j^ (35)

k 0 0 1

It is important to note chat this matrix equation (and all similar to this) is
a shorthand notation for writing three equations at once. Each equation
expresses one of the unit vectors, alon8 the coordinate axis of one co-
ordinate system in terms of the other (rotated) coordinates.

For the sake of brevity we have written

SA for sin A and

CA for cos A

where A is any angle.

Similarly, the projections of the unprimed coordinates on the primed co-
ordinates can be written as the inverse (also the transpose) of the above
coefficient matrix, namely,

A -o
iAl so cO 0 i' (36)

L kA, 0 0 1 , k1

17



If next a rotation of magnitude 0 about j ib performed we obtain

1A0000

"414

Figure 5

H I = o 0 1 0i (37)

k"l so 0 CO k'l

and the inverse

CO 0 o so t

i'h1 11 o 0 C" (38)

k' -so 0 Cd kl#

The double primes are used to denote the new position of the primed co-
ordinates.

"18



Finally we perform a rotation about ill of angle 40, obtaining

k , It

Is ~k3

0 JA

49

FigSu.• 6

j1 0 0 iB

0B - Cj6~ soe (39)

k 0 -sCo cgs kIJ

and

Now the B-subscript denotes the new and final position of the double

primed coordinates. Three sequential rotations of magnitude 0, 9, and .0,
respectively, have now been completed.

19



If one successively multiplies these matrices, the following is obtained:

-0 .0

~inIooc COOCJIJo COCO W- iP(1

kBaJ soccý + sso SOCOS -sWOc cocl .kA

and the inverse

1 AOSSVJ+C 09650 SOCOC +SOSO~~ ( B

A " COSO SOWO + COCO WOW - WO " B

kA -S 0 Coco k

To obtain the significance of these equations, consider a vector R

written in terms of each coordinate system:

R -(R)XAIA +(R)yAIA *(R)ZAkA -(R)xBiB 4 (R)yBjB +(R)Z~kB (42a)

Assume that the components (R)XB, (R) v, and (R) ZB are known, and we

wish to obtain values for (R)XA, (R)YA, and (R)zA. To obtain these val-

Ues we %rite i Bs jB, and k B in terms of the i A, A, k A? coordinates and

equate like components. For example, from Equation 41 we have

iB "c4c iA. COSA S -

jB - (SOSWiCO - COS )iA + (SOSOSO1 + COC 0jA + Wt9 0 kA (42b)

kB M (sC + SO÷ s i +.(SXCzOSO - sW/)i^A + C4JCOkA

Substituting these values in E quation 42a and equating the coefficient of

i on the right hand side of the equation to (R)XA, the coefficient of 1 A

on the left side of the equation, and the coefficients of I"A and k A to

(R)YA and (R)ZA respectively yields:

(R)xA - C0OW(R)Xa + (SO(yS3CI - C•S£) (R)yB + (SOCOCO + SOSO) (R)Zk)

(R)yA- COSO(R)XB + (SOSOSO + CC,ýCO) (R)y1 + (SOC•Sb• - SO•Ct) (R)zB

(R) ZA = -S'R)x" S6CO(R)I B + COC(kR)ZB (43)

20
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Thus, Equations 41 and 42 allow us to convert a vector in one coordinate
system to another coordinate system.

It is also possible, and necessary, to express the angular velocity
(discussed prep'iously) of the rotating system relative ir the fixed system
in terms of the rotating triad with expressions containing the Euler angles and

their derivatives. Using prior notations the angular velocity can be written as

-6 do- Lý (44)"7z dt dt

"Jo obtain o, in the rotating coordinate system, i.e. •, determine

-4. 'q .4 -4,

i" in terms Of iB. B9 kB
4 4 .- 4 -4. 1

j' in terms of iB, BP, kB

kA in Cerms of 1B,' B, kB

Using relations already established

*1t

k- -SoiB + sW jB + C÷CGIkB (45)

If like components are now combined the following results are obtained:

(W)XB - _. so in the IB direction
dt dt

doco + _-Wc° in te direction
dt dt

((+ 64 C=;dO in the kB direction (46)
ZB d i

21



Itis also possible to solve for d , LO, and -Le in terms of (G)XB,dt dt dt
t'l•, and ((a)ZB obtaining

do. Wy • clb _ z BS O
dt

It B +* Wa~ttAOOSq + CZ a

S4 Wy13 O Sec 0 + WZBC0 Sec 0 (47)
dW

Se now have sufficient mathematical tools to derive the equations of
motion.

B. The Equations of Motion

1. Missile Fixed Coordinate System

In this tirst derivation of the equations of motion, all forces and
troments are referred to a coordinate system rigidly attached to the mis-
sile. The following definitions and assignments ate made for this ease:

.4 -4. -4.

il, il, k, A space-fixed (inertial) coordinate system whose
origin is located at the cent•r of the earth with
the ki axis coincident with the spin axis of the
earth.

I' •kE A coordinate system that r~tat~e:with thS earth,
having the same origin asil ,J kI with kE

coincident withk 1. 'This system will be called

the rotating earth coordinate system and is that
to which the trissile trajectory will be referred.

-4' -4 -4

im, Ju, kt A coordinate system rigidly attached to the mis-
sile, origin as yet unspecified, but i taken along

the longitudinal axis of the missile.

22



0 The angular velocity of (' ~E, kE) relative to (ipi, 1 k1);

that is, the earth's rotation.

W Angular velocity of (im, ji, kM) relative to (ii, 1E, kE)"

OF Angular velocity of (iv, j , k.) relative to (ij, jp ks).

•Ze can note by a theorem previously proved that

(f + 11 ÷iE (48)

Let now M be along the longitudinal axis of the missile, as previously

stated. Let also R be a vector defined between the origins of the inertial
+-#• -0 ", , .0 -0 .

coordinate system (i, Jv kt) and the missile coordinate system (OM j j km).

Finally, let Sm be the vector from the origin of the missile coordinate sys-

tem to the graviiy center "of the missile, and RO be a vector from the origin
of the inertial coordinate system to the terminus of SM. These vectors are

shown in Figure 7.

k i Center *f Mail

SS

Figure 7

23
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le have by Newton's Law for a rigid body

d*R
Y. -M (49)

dt3

where IF is the summation of forces acting on the body and is
dt'

the acceleration of the center of gravity of the missile relative to the

inertial coordinate system. In particular, the expression for dl!ý is
dt'

given by Equation 32 with A and R replaced by R and S. respectively:

deRDdkRdMSM dMSM( ()d h J )M ( 0

dts dt dr dt dt

If the origin of the missile coordinate system is located at the missile
gravity center, then S M becomes zero, and

F - m d d m (51)

dts dtz

For this assignment, the fictitious accelerations (Coriolis, etc) in Equa-
tion 50 become zero. It is for this simplification that the center of gravity
of the missile is chosen as the origin of the "missile' ' coordinate system.

To obtain a particular form of the equations of motion we can write
d1R in either the inertial or missile coordinate system as follows:

dt

-1 s(V), -(V)k-ii + (V)y 1j1 + (V)z~ikl=(V)M= (V)x~m + (Vym)im+ (Vzjj)k1 (52)
dt

Using Equations 24 and 34, we can express Equation 51 in the follow-
ing forms

24
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dt

"*dM(V) M ""
Y.F-M -.......... + ('PMX (V)j (53b)

X F - m + ( )u + 0f40M) X MV)• (53)

Note th;: Equation 53c is expressed in -erms of the missile coordinate
syste-m To use this equation, the forces also will have to be expressed in
term•t• L4 the missile coordinates.

Ftor the moment equation we have
4

~ -~MM) (54)
dt

Where IL is the summation of torques acting on the missile, and (]) -

is the total angular momentum of the rocket relative to the inertial system,
but in terms of the I ) or (, IM M) coordinates, respectively.

Again, using Equation 24

-- ; & + ('OF) X (M, (55)

which, when considering the earth's rotation again, becomes

dt dt

If the principal axes of the missile are chosen to be coordinate axes of the
missile coordinate system, we can write the angular momentum as

IM I M "OF)v~ M ,- lyjo, ýw W + IZM((oF)Zmk M (57

* .4 *

Ixja, Iym, lZM being the moments of inertia about the im, i,, ,k axes,

respectively. Equations 53 and 56 are the general vector equations of
motion of a missile.

25



.4

Since the spin rate DE of the earth is known, we can appropriately st-

lect a convenient orientation of the 4 th, k, and iM , IM, km coordinate sys
.4 .4 ,

tems and, by use of the Eulerangles, obtain 12 E in terms of theiM, Ju, ku
-0

system, that is, (.qdul

To accomplish this objective, set both k, and kE permanently along the
spin axis of the earth, so that

0 E fuek 4 a E (58)

and determine the compone•s of k- kE in terms of imt V k.. Using

Equation 42 yields

40 .6 .6 .0

CEkE a -0EAM + (IEOC6M + flECOC&M (59)

In component form, Equation 59 becomes

(CIE) XM M "OreS

MOEYMi - IO

(ME) zM fl OCOC (60)

In the vector Equations 53 and 56, (unlike CIE) & and V are not known

quantities. They are unknowns which will ultimately give rise to the
trajectory through solution of the differential e quations of motion. From
before

Mid f (V)xM ÷ M v+ "ymi'h . (V)zwkm (52)

Similarly, writing Z' in component form yields:

O= ( i)M + ()Ym/ + ()zM k" (61)

26



Now, we can immediately write the basic vector equations in component
form which are valid for the spherical and rotating carth case. Two facts

should be pointed out in these general vector equations: (1) Factors such
as variable air density, variable wind, and the gravitations! acceleration
do not appear in the inertial terms (which have just been defined), but
only in the force and moment part of the equations of motion (which will
be derived in Section B of the PROCEDURE). (2) The general vector

Equations 53 and 56 we written in terms of the missile coordinate system
(as indicated by the presence of 4u,-I). As such, the unknown quanti-

dt
ties V., wi must be related back to a coordinate system to which the

motion is referred. The latter presents no additional derivations. R. in

Equation 43, which expresses the components of an arbitrary vector in the
coordinate system, may be replaced by the missile velocity vector, (V)M.

Similarly, (W')m may be related to the rates of change of the Eulerangles

by Equation 46 or 47. When the angular velocity of the missile is known,
the new Euler angles can be computed by an integration, while knowing
the velocity components will yield, upon integration, the missile position

((R)xE, (R)yE, (R)zE). These equations are all tabulated at the end of

the PROCEDURE.,

11. Fixed Plane Coordinate System

It is not necessary to specify a "missile coordinate system" that
is rigidly attached to the missile, as has been done previously. In this
section a "missile coordinate system" with one axis constrained to lit
in a given plane is considered, although a coordinate system that is
rigidly attached to the missile is temporarily used.

The following definitions and assignments are made:

-? ' 4 S
i1, •' "k, Same coordinate system as defined earlier (see p 22)

1 E 'kE Same coordinate system as defined earlier (see p 22)

For the interested reader, Reference 5 contains the derivation of these equations of
motion without the use of matuiz notation.
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'F' 1F, k'F The missile coordinate system. The particular orienta-
tion of this system will be such that the iF aXis is

coinjident with the missile axis of symmetry, while
the JF axis is constrained to lie in a plane parallel to

-* 4 40 40 4

the plane determined by iý, 11. The origin of iF, ji, kjF
is at the missile center of gravity.

IM, Ju, kid A coordinate system that is rigidly attached to the
missile, with im along the missile axis of symmetry,

and with the same origin as It Ir I

tThe angular velocity of is, kE, ktS relative to , .

A Angular velocity of iF, JFP kF relative to ,E' Is, kE"

C) 'Angular velocity of iu, jl, kid relative to iF, iF, kF.

Note the different meaning of this w compared to that
defined on page 23.

WF Angular velocity of iM, IM , km relative to i, I,

Our basic vector equations in terms of 1 iF0 k F now 4-conle

d FVF + , ., .4. d- (l) F + ( 0 s),) x VF (62)

I L + ((()F + (11)10 X JF (63)
.4

In these equations the quantity ((r))) + (nE)F) is the angular velocity of

the missile coordinate system to which we refer our forces and moments,

relative to the inertial system,4 i.e., (iFV, jF k F ) relative to (,j 1, y
To derive the equations of motion for the fixed plane system, it is first

necessary to specify the orientation of 1 F, 'F, kF relative to iE, JE' kE

in terms of the Euler angles, so that the jF axis lies in a plane parallel
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to the plane determined by i1 , JI . This condition will also be fulfilled if
4 .•4 .4

the axis is constrained to lie parallel to the plane determined by iE, Jg,

which (by definition) is coincident with the iI. Plane.

To accomplish this objective, consider the foll9wing two rotations:
(1) Rotate the i, j, kE coordinate system about kE by an angle of magri-

tude o, obtaining the identical matrix expressed in Equation 35. (2) Ro-

tate the resultant coordinate system P,, I, k abot the ' axis bk an

angle of magnitude 0, the final position being denoted as iF, 1 F' kF. If

the resultant matrices are multiplied there is obtained

i E Coco -so cost) iF

aE d -s0 0 cO k (64)

It can be seen from the inverse that IF has no component along kE for all

and e, which fulfills the constraint on the jF axis.

"#. 9 .9 I 
9 4 4

The angular velocity Q) of P JF' F relative to i. E'E can be
writen as

(I d& 4  
., do~ (65)...... k -

E dt

By obtaining the components of ItE and j, on the . •'1 , k axes, we have

() F - -so I.F + Fd + -; CGk F (66)

dtF 66

Solving for dL; and dO yields

dt dt
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do -(n)xr (- z07)
dt sina Cox 0

do (fl), (68)
dt

For Equations 62 and 63 to be of use, it is necessary to express JF' the

angular mom eitum, in terms of the angular velocities and the moments of
inertia of the missile, namely

JF 1XF((F)XF'F + IYF('F)YF'F + IZF('OF)Z]FF (69)

where

~) (4&l+&L(70)F + + E

Additional relationships between W and D must be derived since six un-
knowns, instead of the usual three for the angular velocity, are introduced

when w and Q are written in component form. These additional relation-
ships will now be derived.

It will be recalled that both L. and IF are to be coincident at all times.

Hence, the only rotation enjoyed by the im im, k. coordi.iates not shared

by the i, 1 F' kF system is the motion about iF, or the spin of the missile

about its axis of symmetry. This can be expressed as

(w)XF - P (6)YF - (w)ZF ' 0 (71)

where P is the spin of the missile.

Since a new unknown, P, has been introduced, it becomes necessary to

eliminate one of the unknown components of hF" This is easily done since

(0)XF can be written in terms of M) ZF by use of Equation 67.

(D)X= -- ")ZF tan 0 (72)
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Finally, we can account for the earth's rotation, CIL,, by defining i t, k

and iE, is, kE coordinate systems as in the "missile fixed" case with

the result as bWfore

GE- (flE)kI (~EE

where, by Equation 64, kE can be expressed in terms of the iF, jF, kF
system. Tl*_.-refore:

("2E)XF -, -(f1E)$4 (73)

(fWE) YF - 0 (74)

U')ZF - (MOCO (75)

With the relations obtained from the above analysis, (,)W can now be

written as

(¢OF) - (P -ton 1(f)ZF - (CE)SO)IF + (¢)YEiF + ((€)Zf + (0E)ZFC$)kjF (76)

Once Equations 62 and 63 are integrated to obtain the unknowns
(V)xp (V)YF, (V)z7, P, (Q)YF, (Q)ZF, the inverse of the matrrii in Equa-

tion 64 is used to obtain (V)xE, (V)yEI (V)Zp. Equations 67 and 68 are

used to determine db and d__, 7ntegratiott of which provide 0' and 8.
dt dt

These equations are tabulated in Part V of this section.

Ill. Forces and Moments

The forces and moments acting on a missile may be classified

into four categories, as follows:

1. Gravitational

2. Aerodynamic

3. Jet

4. Guidance
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Guidance terms are beyond the scope of this report and will not be con-

sidered. The remaining forces and moments will be considered in the or-

der shown on page 31.

a. Gravitational Force

The gravitational force acts at the center of gravity of the missile

and, hence, does not produce any moments. Further, when specifying this

term and other altitude dependent terms, distinction must be made between
the spherical earth and the flat earth cases in the equations of motion. In

both cases, however, the magnitude is given by g - g&Rv/ho' where Bw

is the mean radius of the earth, and g. is the gravitational acceleration

at sea level. To ascertain the direction of this force for the flaz non-rotat-
-4 -4 .9

ing earth we may take the inertial coordinate system i', il, k1 to be such

that ki is pointing vertically upwards.
.4- 4

The gravitational force mgY (Y being a unit vector specifying the

direction) then becomes mgY - -mgk! (acts opposite to kj). With respect

to the missile fixed system (by obtaining k! in terms of im, IM' kM), this

force is

mSY - mg([SAM S- CjM-CoCeku] (77)

and, by similar reasoning, for the fixed plane system

mSY• [StiiF-COkF] (78)

In both cases, the altitude (h.) will equal (R)ZE.

For the spherical earth case, it is necessary to define a vector

from the earth's origin to the center of gravity of the missile. It is along

this vector that the gravitational force acts.
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Referring to Figure 8

z

Y
X Y

r,
FiSum 8

we may moce
•4, -4 4 4R,)xiE +(R)y~i ÷( iCkE (79)

R (R)XSi +(~EjE +(R)ZEE

R RY (80)

Hence

R A . (R)XEi • + (R)YEJ 2

R ~/()~E (R4E + C)* ./(R4 + (V4Z + (VZ?

(R)zEkE

+ + (R)2 + (R)(
XE YE ZE

For the missile fixed coordinate system,

'E - C.COiM + (SOSOCOt - GOSO)iM + (SCqSCO + SOSOI)kM (82)
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with similar expressions for JE k.E Combining all the I. components

will yield in this direction:

-0

(may)XM -(R)xEC6C0 + (R)yC-6S -(R)ZES61 (83)
%/(R)$ + (RG + (R)"

XE + RE ZE

The same procedure is used for the fixed plane coordinate system, where
again a tabulation is presented in Part V of this section.

The altitude for the spherical earth case is simply

R -. - he "(R))E,+ -,(R) + '¢) (54)

b. Aerodynamic Forces and Moments

The aerodynamic forces and moments that will be included in the
equations are prqsenced in the following table.' For convenience, both the
scalar magnitude and direction are included in the table.

SymbI Poree Moment Sealer Magnitude Olrfction

(DW) Axial - pld3V'k•DA Along mis-

Drag sile axs

(NF) Normal pd'sskN .I to mis-
aile axs
in plane of
yaw

(MF) Magnus - pd'c( FxVrk F L to plane
of yaw

(R4) _ Restatoring pd'Vt %W(A.-.) I to plane
of yaw

(NMN) Magnus pd'i FxVrk F(A F-r) I to missile
axis in
plane of yaw

(YDM) Yaw Damping pd'Vr(c4y +64z) 2 kM Independent
of yaw plane,
but i to miw
sile axis

l'his table was essentially taken from Reference 6. For a more complete listing with
explanations, see Reference 4.
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SIM"I Pone Moment Seater Mlg.Ih~d. DIreetSem

(AR) - Roll Dampink AprS$ mis-

Motment silt ails

Roll Moment pVr'k0ds Aloang nlo
silt a s

The velocity V, expressed in the table is the velocity of the missile

relative to the wind. For example, if the wind has a velocity component
(V1 )XM in the same direction as the missile velocity component (V)x

as shown below, then the velocity of the missile relative to the wind
((V,)xu) becomes

(V)x"(V)xu - (Vv)xW (85)

Figure 9

Similarly

(v,)v- (V)yU - (VW)YM

(VzU= (V)zU - (VW)z(0

It should also be noted that the anSular velocities IFX' Y' and •i;z

expressed in the table are the three components of 6F in vctor Equation 48.
For example, in the' direction, with the use of Equation 59, wFx can be

written as

(W F)XM = -(1E)So + (Q) X (87)
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Finally, if the wind is given in terms of either the inertial or rotating
earth coordinate system, the Euler transformations should be used to
determine the wind components along the axes of the missile coordinate
system.

Each of the forces and moments given in the table will now be briefly
discussed. The reader is referred to other texts for a more complete dis-
cussion.

The axial drag acts along the missile longitudinal axis of symmetry,
but in direction opposite to the velocity (--(V)xu) of the missile alorng

that axis. Since the line of action of this force passes through the cen-
troid of the missile, there is no induced moment due to this force. The
magnitude of this force is as given in the table.

"The normal force, on the other hand, acts perpendicular to the missile
axis and lies in the plane of yaw, that plane determined by the velocity
vector of the rocket(V,) aud the rocket axis(See Fig 11, p 37). The com-

ponents of the normal force along the 1M and kU axes act opposite to those

of the missile velocity components as shown in Figure 10, p 37. 7o ob-

tain the magnitude of these components, as shown in the table (pp 34 and

35) note the normal force lies in the yaw plane but perpendicular to the

missile axis; hence, if y (in Fig 11) is defined as the angle between the
yaw plane and the 'M axis, then it is easily seen that

YNF yM = 1NFJ cos y

INFi = JNFI sin y (88)ZM

where

(V~y

Cos y - (89)
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and

S(VI)zM

This force does not act at the centroid (CG) of the missile, but at what
is known as the center of pressure (CP), which is determined only by the
exterior configuration of the missile. Consequently, this force gives rise
to a moment, called the restoring moment. If the distance between the mis-
sile center of gravity and the center of pressure (CP) is denoted by )A (CP
is assumed behind the CG as shown in Figure 12), then the components
of the restoring moment are:

IPM Y - IN elz, Xl

JRMj~jd - JNFtZMA' (0
*z -lely. ' (90)

(HP)ZM

( (v, )

(M F)y)A

Figure 12

If the velocity components are along the positive 1 M and TM axes, then,

by the right-hand rule, the components of the restoing moment will be

negative along the Jm axis and positive along the kM axis.

The normal force and axial drag as described above should not be con-

fused with the lift and drag which are components perpendicular and
parailel, respectively, to the velocity vector of the rocket.
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The magnus force depends upon the angular velocity of the missile and
acts perpendicular to the plane of the yaw. Consequently, to obtain the
component of this force along the jA axis, it is necessary to multiply the

scalar magnitude by sin y. Thus,

JMFy Y"U MFt sin y Qons j

and

IMFIZu - UF cosx Y along IM (91)

If (Vi)yia and (V,) ZM are the velocity components of the missile relative
to the wind (discussed previously), then the sign of the components of
this force is as indicated in Figure 13, where the spin is considered to be

(v,•.

Spin (MF)ZIMA

Figure 13

positive, i.e., acts in the direction of the positive iM axis. If the direc-

tion of the spin is reversed, the magnus force will act in the opposite
direction. Again, since the magnus force does not act at the cenxroid of
the missile, but at the magnus center of pressure, this force gives rise
to a moment called the magnus moment. If the magnus center of pressure
is again behind the center of gravity, as indicated in Figure 14 (p 40),
then, by the right-hand rule, both components of the magnus moment will
be in the positive jMl km directions, the magnitude of which will be the

magnitude of the scalar component multiplied by the moment arm X F as
seen in the figure.
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(M) ~ZM
' MFyM

Figure 14

The yaw damping moment tends to reduce the magnitude of the yaw

(assuming kH positive) and acts opposite to the resultant of the lateral

angular velocities ((o(j)yM (wF)ZM). This is shown in Figure 15. Note

that there is no component of the yaw damping moment along the missile

axis of symmetry. Noteworthy also is that a force associated with kH

exists; because it is difficult to measure this effect, however, this force

was omitted in the analysis.

kIM

(Y Oki) zM

Figure 15

The final aerodynamic terms to be considered are the roll damping mo-

ment and the roll moment. Both moments act along the longitudinal axis of

the missile. The former is induced by the fin cant, while the latter tends

to reduce the axial spin by skin friction on the surface of the missile dur-

ing flight. Both moments act in a direction opposite to that of tht srin of

the missile.
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It should be noted that none of the aerodynamic coefficients are assumed
to be linear in nature and hence are not to be taken as slopes from experi-
mental curves. Rather, these coefficients are obtained directly from experi-
ment as functions of Mach number and angle of attack. Fw" example, one
value of Mach number, the angle of attack, and the corresponding axial
drag are sufficient to determine one value of kDA.

c. jet Forces and Moments

The jet forces and moments considered in this report are due to
thrust, thrust malalignment torques, and jet torque to initially spin the

missile about its axis for spin stabilization.

The jet thrust is the primary force that imparts forward motion to the
missile. Although it should ideal!y act along the missile axis of symmetry,
the thrust may have components along all three axes of the missile co-

ordinate system. This is due to imperfections in the rocket design, the
practical nature of propellants, and other factors. To obtain quantitative
relationships, one may conveniently define two angles: (1) BT, the angle

between the airection of the thrust and an axis parallel to the missile axis,
and (2) BA, the angle between the projection of the thrust force on the

J, k. plane and the im axis. These angles are illustrated in Figure 16.

Figure 16

From geometrical considerations,

(T)XM = T cos T along i M axis

(T)y T Cos A along 'M axis

(T)zi = T sin 6-T sin 3 A along kM axis (92)
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If the direction of the thrust does not change relative to the missile,
then for the missile fixed coordinate system, both SA and 8 T can be taken

as constants during the missile flight.

To obtin the corresponding malalignment torques, refeecrce is made
to Figure 17.

(T (TzYM

W(T)XM

Figure 17

If (T)XM, (T)yt4 , (T)zM act along the positive LM, M, km axes respectively,
then taking moments will yield

Thrust moment in iM direction:

(TM)xM = (T)ZMr. (T)T)YMrl (93)

Thrust moment in direction:

CPAXMyM = ( 1)xmrI - (T),Mr, (94)

Thrust moment in k. direction:

(T4).I• = (T)yMrt - (T)xyrU ,95)

where r,, r1 , and r are defined in Figure 17.
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Finally, the jet torque can be considered as proportional to the total
thrust or KT. If the spin about the im axis is clockwise, then the jet
torque is said to be positive by the right hand rule. Its purpose is to ini-
tially spin the missile for spin stabilization. it acts as indicated in Fig-

ure 18.

S-0 Diagrm illustrlating fa te, qws

Figure 18

In summary, the forces and moments as discussed in this section are
exhibited in the table shown on page 44.

IV. Initial Conditions, Conversions to Specific Cases and Singulari-
ties

a. Initial Conditions

Initial conditions for the equations of motion will consist of
initial values for the following variables: (R)x i, (R)y1 , (R)zl; (V)xM,
(V)yN, (V)zM; 0, 0u, 0; (,))xm, (cu)ylj, (w)vld. Of these quantities (R)xI,

(R)yl, (R)zz, and 0, 0, 0 are in reference to the inertial coordinate system,

while (V)XM, (V)ym, (V)zM and (w)xm, (()y~w, (ca)za are referred to the

missile coordinate system. In addition, it is important to know the orienta-
tion of these missile coordinates at launch, relacive to the earth. Any ini-
tially directed forces (for example, thrust malalignment) will influence the
particular latitude and longitude of the missile impact point at the end of
the trajectory. These directed forces take on added importance in influ-
encing the terminal point of the trajectory if an ellipsoid is used to ap-
proximate the earth' s geometry.
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To obtain the initial conditions, let us now precisely orient the inertial
coordinate system. As previously stated, the origin of this coordinate sys-

tem is situated at the earth' s center with the axis coincident with the
-4

axis of spin of the earth. Now let it (arbitrarily) coincide with the Green-

wich Meridian (zero degrees longitude), while'it is perpendicular toi

and k, in a direction given by the right-hand rule. Further, let us assume

the existence of another coordinate system jC, Ic, kc initially coincident

with it, Ji, kt. Upon successive specified rotations, it is intended that

iC, ic, kC will become the missile coordinate system. Here the subscript

C simply denotes that this coordinate system is used to determine initial
conditions. As before, primes will be used to denote the intermediate
rotations. Let the launch point of the missile be at A* longitude and BO
latitude.

-4

Out first objective is to orient the iC axis so that it passes through the

launch point of the missile. This is easily done by two rotation s, first a
rotation about k, of magnitude A', and second a rotation about Ic' of

magnitude B0 . Note that iC, ic, kc is n-w labelled as iC", ic", kc""

Using the techniques in Part A of the Procedure, we can readily establish
relationships between i1 It, k, and c i"C kc", . By matrix multiplies

tion, we have

i C1 [CACB CBSA -SB jt

.4, .0

It will be Convenien if, in principle, no tst

coordinate system out to the surface of the earth so that the origin is at
the launch point 0' of the missile. It will be noted that ic" is still in a

direction extending radially outward from the center of the earth and pro-
vides a perpendicular line to the ,arth' s surface at the launch point,
while "I, and •C" determine a tangent plane to the earth's surface at 0.
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Note also that the kc" axis points towards north. In this "translated"

position 01, ic", 1c", kC" will be called the geographic system. To
completely specify the orientation of the missile, two additional angles
are specified relative to this geographic system. In this analysis we will
use (1) the angle of declination of HO fromn the perpendicular to the earth' s
surface, and (2) a lateral orientation angle GO measured from the negative
kC" axis in a counterclockwise direction in the tangent plane.

These angles are pictured in Figure 19.

Translated

o Oriontotlin M Axis

.40

Figure 19
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The object now is to perform two additional rotations using the input
information of G* and HO, so that the ic" axis finally coincides with the

missile axis. We first rotate about 1C by G' so that -k 21 coincides with

the projection of the missile axis on the ic", k el plane. The second

rotation is about the iCO"' axis of magnitude H°, which finally causes the

ic" axis to become coincident with the missile axis. It is important to

note that the im axis is located in the tangent GO from the east, measured

in a counterclockwise direction. Figure 20 shows the final rotation.

M

C

Figure 20
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Mathemazically, the resultant matrix for the GO and H rotations is

i" CH SH!;G -&ICG "C'

lid 0, CG SG " (97)

km SH --CHSG CH SG ke'

The matrix for all four rotautons becomes, by matrx multiplication,

i'm All Ass ,$)

km A ll A ss A n ;

where

All = CACBCH - SASGSH - CASBCGSH

A,2 SACBCH + CASGSH - SASBCGSH

A1, g -CHSB - CGCBSI

As, - -SACG + SGSBCA
(98)

A,, * CGCA + SGSBSA

As g SGCB

All - SHCBCA + CHSGSA + CHCGSBCA

Ass " SHCBSA - CHSGCA + CHCGSBSA

A,$ -SHSB + CHCGCB

We are now in a Fosition to obtain the initial Euler angles, so thac fI

be comes coincident with the missile axis. We first perform a rotation about

ki of magnitude 0, and a rotation about of magnitude e. We will now have

il" coincident in both cases. To obtain " we perform a rotation about

ill, of magnitude 0. Mathematically, the three rotations expressed in matrix

form are
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im sOsO - COOS•sosO + COCO SOco 11 (9)

SiMIc b+ SO&O SOCOSO - SOCO4 COC6 J Lj- J
This and the preceding matrix must be equivalent, since the final positions
of the missile coordinate systems are to be identical. To obtain 0, 0, we
simply compare corresponding elements of the two matrices. In particular,

SO = SBCH + CBCGSH

s0Co (SACBCH + CASGSH - SASBCGSH)

CE&C0 (CACBCH - SASGSH - CASBCGSH)

COS6 taq - SGCB (100)
Coco CHCGCB - SHSB

It is to be understood that these angles are at t - 0, or at time of launch.

One must be careful, however, in ascertaining the correct quandrant of
these angles.

For the initial position of the missile, only the latitude and longitude
are required to compute the (R)x1, (R)My (R)zl coordinates of the missile

launch point. We can assume at t - 0 that the reference coordinate sys-
tem 'E, JE' E is coincident with the 1,'" coordinates, where again

the il axis coincides with 0* longitude. From Figure 21 (p 50) it is easily

seen that

(R) - R cos B0 cos A*

(R)yI - RVcos B0 sin A0  (101)

(R)zl - RV sin BC

RV being the mean radius of the earth.

Similarly, knowing the coordinates of the terminal position of the mis-
sile enables the determination (by the same equation) of the latitude and

longitude of the trajectory' s end.
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,"Spin Axis of IEarth

OL Longitude: t )
Launch Point

of Missile

Figure 21

Finally, knowing the orientation of the jM axis and any directional

forces and moments relative to a specified compass direction enables one

to compute the components of these forces and moments along the missile

coordinate system. For example, if one wanted the effect on the terminal

point of the trajectory due to thrust malalignment initially directed in an

easterly direction, then 8A (the lateral thrust malalignment angle) may now

be given a definite value, namely the GO as we have defined it. Similarly,

knowing the orientation of the missile coordinates will enable the compu-

tation of any initial lateral velocities and angular velocities. This com-

pletes the discussion on initial conditions.

b. Conversion to Specific Cases

For short trajectories, generalization to the "rotating earth" and
"spherical earth" cases may not be warranted in solving the equations of
motion. Converting the equations to the flat earth requires using the appro-
priate gravitational term as well as setting the altitude equal to Z (in

place of hI - /(R)' E (a),E + (R)rE). To convert to the non-rotating

earth it is only necessary to set CIE equal to zero. Similarly, to neglect

wind one sets VV equal to zero.

c. Singularities

Care must be taken that certain quantities do not become increas-

ingly large, without bound, in solving the equations of motion. Such a
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singularity is present in the missile fixed system. Equation 47 is repeated
below for convenience

ýL -COC - OZ9

dt

_.O -. Wx + WY tan OSSO + W~z tan OCQ (47)
at

±- (ySO Sec a + ZC4 $ecc aat

When 0 900 both d- and do which means that the above set of

dt dr
equations cannot be used in the limit. To overcome this difficulty we take

can - -Z (102)

(a y

which is obtained from Equation 46 with 0 , 900. Differentiating both
sides of this equation yields

W- ((dwy Y 4' (103)

at (a yA

If wey also equals zero, one may use the alternate expression

cot , Y--- (104)
CaZ

obtaining

dz a= ( •Sj0  (105)

at Za

Knowing d 0 we can solve for dO through
dt dt



d d .- (106)
dt d - Wx

which is also obtained from Equation 46 with 0 - 900. If in addition to

6 - 900, both w. and wz equal zero, recourse must be taken to higher or-

der derivatives.

V. Tabulated Equations of %lotion

Following is a summary of the six-degree-of-freedom equations of

motion for body fixed system (rotating spherical earth).

Force Equations

T COS ST- Pd'(Vt)kDA + mg

!(a)' + (R)'E + (R) 3

XE YE Z

[-<R)xE CoS 0 cos V - (R)yE coo 6 *in V + (R)ZE in 0] -

SM dtVx + ( (&J, + (VnE) sin 0 coo 0) MVZML d(V

- (( )zM + (flE) cos 0 cos 6) (V) Y),

pdTdVr)"kN(V- )YMT sinBTcos BA- M

%/(N")2+ (VrNP

SPd"(tF)XM(Vr)MkF(Vr)ZM + mg

+v(R) (R + (R)

[-<R) xisin 0 sin • cos 0 - cos 0 sin 0)

-(R)yE( (sin Gain sin 0 + cos i cos q)- (R)ZE(sin 4 cos 0)] =

f4 dt + (((O)ZM + (WE) cos 0 cos 0) (V)XM

- ((wO)XiM - Old sin 0) (V)zM

--

I : I • I I I I I I I I I2



TSin 8T 6AO - pdN'() )' kN(X Z

V(~11  )ZM

Pd'(- F) X (Vt )MlkF (V, )y m m

V(v )2 (y'~ (R) + (R)'E F R+

[-(R)XE (sin 0 cos 0. Cos iý+ sin q5 sin V')

-<R) yE (sin 6 cos 0 sinlV sin di cos V) -(R)ZE(cos 95 Cos 0)]1

[d(V)zm
m t (wX - (fd i 0) (V)YM

-()) + (n E i46C*3 0) (V)XM

Mamew~ Equatiops

T sinl STsi b - T sin 8T COB bArl + kT

lxI -(n,) C.S 0 Cos V Y' ( Q)E) * Cos 0 sin 4' (W') ZM

+~ zmr- I Y. ~, ( sinl 4 CosB c)z

+ (QE) Cos 4' cos a(w)YM + W~E? COS' sinl 4 Cos 4')

pd'(V )',k (A-Jr) (V)

YN rZM

pd¶.w'FXM( V)MkF(A F -r)(Vr)M - HYmd(FY

k V)pd w



YMr d(w) yN ('10 CO 0o CO 0 MXM + ME) Sin 0 (t)Z
_Y~ dt

"+ [Ixp- I Zi-J ((ýýa)ZuMusXh - (()E) $in 0 (W~) ZM

"+ ME) COS 4) COS 0 WX - (00,~ COS COS 0 $in 0)

pd'(V,){'k(A - r) tVrYbA
T sin ST 'O"Ar - T cOf -___________

v M+ (Vr)*zm

P,(~4U)XM(vf )MkFk FQ -r)(V,) zM H(u)wdf )Z
++

+ ~

-~ ~ ~ M I((Xý)+ -f(E) sin '0 COS t9 (0j)~ M0 iA ()Y

(Q (E) si 8 (CO)YM - M0 E)' Sinl 8 Sin 45 COO 8)

Additional Equations

VXE -inCoOSCox 0 (V)XM + (sin 0Si 0cod ) COS 5'a 'A) (V) YU

+ (sic & Cox q5 COS 4) + sin 4) sin 0) M(V)z

VYE - COS 0 sic 'k (VXM + (sin 0 aim 4) sift +) COS 4) coS 0) (VYN

+ (sin 0 COS j6 sin 4 - sinl 4 COS 40) (V)ZM1

V - -sin 0 MV)M sin 4k COS a (V)yM + COS 4) Cox 6(V) zu

(VW)xm" (V T) XE COS t9 COS 4 + (VV)Y E coo 8 Sin 4) VW)zE sin 6

(VW) y~i (VT) XE (sin a Sin 4 codn4 - Cos 4) &in 4))+ (V,)YE

(sin 6 sin 4) sin 04 + Cos 4 coo 4)) + (V W)ZE sin 4) Cos t

(V1V) ZiU - (V&)XE (Sin 8 Cos 16 Cos +) 4Sin q5 sin 1b) + (V,)Y F

(sin 8 cos 4)Sin "a in4 coo 4)) + (V,)ZE Cos q$ cog

54



do.w c)Cox (ZAslin

dc

(Vr )XU - ()m- (vt) X)A (dm X - (nE)sin 0

(V ) Vy(yy (w ) + (Ysin. Cos 1

(",)zu - (z - (V1 ) zm (C-*Z C*Z + ~ ()E) Co c

Equations for Initial Conaitions

fid 6(0) -coosHsin B +sin Hco G cog B

ton j(0) sin G coo B
cos Hco G corn B -sin H sin B

cad ?A (O) -ca H co Bsain A + in H sin G cosA -sinH eos Gsio B sin A

cog o(O) cosHcog B sn A+sinH sinGcom A-sinH csG siz BeinA

sin 00

(R)XI(O) - RVcoo B coo A

(R~yO) -Rv co B in Aif Sifsen Ion~i~ud &od latitude

(R)ZI(O) - RWsin B
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Stop Equations

(R) XE - (V)xE,4t d t
i dt

(R)yE f (V) ydt 'c __t
dt

(R) z (V)za M Fdo _•a
dt

Equations fo? Singular Conditions

For 0 90' (w)y m ( 0 I i !tded~o y• MM d dt cos2

For 0=90° (•vu (O))zM •

d o~ Z M - ) - ( (O Y M .

dt (a•)t

In both cases

dt dt

Following is an alternate set of more important equations for the fixed

plane coordinate system:

•;Fx = d• xF
= t *fly rV -(s +(1Z n) CO) Vr

L Z Z

E.FyF -- dt F (IF .flEC0) VX- - (-!) ZFtanO- QESO) VZFj

S6

IN '

F -90 I . -



IFZF [,ZF,,(OZF tn6-('E S9)VYF -(0 YIVXFJ

- F [ dp -f)EC6SO OYP - dflzpF tlG 9 - CIZF Qy Ste8 0e
Tt dt

+f)YF( f'ZF * flECO)iz ZI flZP+ EC a) YPIYF

%Lyp d '..Yp+flZ+F"ECe)(P-flZFc&A 6-iESO)1XF

- (-nZF 190 t9 - ES 0 )CrZF+ UE C 6 )IZF

Y"ZF - O(ES9I2YP1ZF (f 2

-(D Y) (P 0'ZF &G6fES6)IXF

VXE - CibCeVXF -S$4VYF +CbS'OVZF

VYE - Si&CtVXE + CObVYF + SOS49VZF

VZE - S9OVXF +CGVZF

(Vv)Xr - (V,)XECOCO + (V,)YESOiCO - (VV)ZESt?

(Vv ) y r . (V,)XESi + (Vy)YECj&

(V) ZF - (V1)YECO&SO (Vw)yESOiS! (V,)ZECO

49e - (
dt

do
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FI a Earth

Spherical Earth

.4 rM, s•S M (-(R)xFcý,c6- (R)yESoCo

'v ' XE tJ ]

+ (R)ZESO))iF + ((R)xE SE - (R)y ECO,)iF

S(( CySe- (R) y SVSO + (R)ZE)kF k

RESULTS AND DISCUSSION

The complete set of the equations of motion are tabulated in the pre-
ceding section. Before these equations are solved, however, the user must

specify other conditions of :he problem. For exampie, the time to the cut-

off point (i.e., where the thrust period terminates) must be given. Varia-
tions in mass, center of gravity, center of pressure, and magnus center of

pressure during and after the thrust stage are required. The thrust mal-
alignment distances (r. , cl, r.) of the rocket must also be furnished. Fur-

ther, a complete set of the aerodynamic coefficients must be given for the
complete velocity range and for all angles of attack encountered.

If it is desired to include wind, a wind profile must be available. In addi-

tion, air density, speed of sound, and gravi.ational acceleration as func-
tions of altitude must be specified. The user should also furnish informa-

tion to determine the end of the trajectory such as terminal altitude, etc.

Similarly, the user must decide upon a particular nunerical integration

scheme in order to solve rhe equations of motion. Frequent!y used in this

area is one of the Runge-Kutta techniques.

It should also be noted that in the tabulated equations of motion (for the

missile fixefý system) several terms contain a trigonometric iunction of the

angle q. For spin-stabilized rockets, i.e., large (cu)xM and (cF)xM,

the rate of change of m may be quite high (d,ý/dt). This may require small
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cm ncrernents for the numerical solution of these equa•ions to obtain
suitable accuracy. This problem is not encountered when one considers a
missile triad chat does not spin with the missile. For this latter case.
however, one seems to be confronted with time variant moments and
products ot inertia for asymmetric missiles.

A final word about the equations is that there is no estimate of the
dispersion of the missile. This requires the computation of several tra-
jectories, each for slightly different initial conditions, and appropriate
statistical combinations of the various range deflections from the stand-
ard range.
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APPENDIX - REQUIRED INPUT PARAMETERS

The complexity of the six-degree-of-freedom equations of motion requires

the use or a computer for solution. These equations have, therefore. been

programmed foa the IBM 709 of Picatinny Arsenal. This appendix tabulates
the input data nac the user must supply to (he. computing personnel for a

meaningful statement of the problem.

Table of Input Data

1. Specify ilat or spherical earth ca.e.

2. Specify rotating or non-rotating earth case.

3. Specify phases of flight that are to be considered.

Phase 1. Acceleration of booster and main stage.

Phase II. Coasting of booster and main stage.

Phase 1ll. Separation of booster and main stage.

Phase IV Coasting of main stage.

Phase V. Acceleration of main stage.

Phase VI. Free flight of main stage.

4. Specify the time duration of each phase considered.

5. Specify mass of missile and booster combination.

6. Specify mass of booster alone (at launch).

7. Specify rate of change of mass of booster during Phase l.

8. Specify rate of change of mass of main stage during
Phase III (if considered).

9. Specify rate of change of mass of main stage during
Phase V (if considered).
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I. GGive data re'ating thru'i vs tiimr for Phase I and for
"Phases III and V (when consideted).

11, Specify initial moments of inertia of booster and main stage

(at launch, Phase I) along principal axes of rocket.

12. Specify rate of change of moments of inertia ot booster along

principal axes during Phase I.

13. Specify rate of change of moments of inertia of main stage

during Phases III and V (when considered).

14. Specify distance from missile nose to missile centroid at

start of Phase I and after separatton of booster.

15. Specify race of change of missile centroid position for

Phase I and for Phases III and V (when considered).

16. Specify same information as in Step 14 for missile center

of pressure.

17. Specify magnus center of pressure.

18. Specify maximum diameter of missile for Phases I and III,

19. Specify magnitudes for the aerodynamic coefficients

D A k

k .N k cý p

kF kH

as functions of Mach number and angle of attack for booster

and main stage combination and main stage alone.

20. Specify thrust malalignment angles (b T' 8 A) for Phases I, I11,

and V.

21. Specify thrust malalignment distances and their rates of change

for Phases I, Ill, and V.

22. Specify proportionality factor of thrust used for initi" -pin

stabilization.
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23. Specify latitude and longitude of ilauncdi point of missile.

24. Specify orientation angles of missile relative to geographic

system.

25. Specify initial velocity components of missile ((V)X,, (V)yM,

(V)zm).

26. Specify initial angular velocity components of missile (0)XMI

(kM' (w) ZM).

27. Specify wind velocity components as function of altitude.

28. Specify altitude at which trajectory is to terminate (air burst,

ground burst).

29. Specify output data desired ((R)XE, (RyE, (R)zE , 6, S,

(V)xE..).

30. Specify time increments for each phase when above quanti-
ties are to be tabulated.

31. Specify any peculiarities of the missile system.

32. Good Luck!
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